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Critical dynamics of the open Ising chain
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The one-dimensional ferromagnetic Ising model with open boundary conditions within the
Glauber dynamics is studied. From the behavior of the order parameter, the explicit scaling form
of the relaxation time is obtained. For finite systems, the dynamical critical exponent is z = 1, in
contrast to the value of the infinite open chain (z = 2).
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The universality of the dynamical critical exponent z
for the one-dimensional Ising model within Glauber dy-
namics has been considered in the past [1-4]. For the
ferromagnetic chain it is well known that z = 2. This ex-
ponent can vary by controlling a parameter in the transi-
tion rate entering the master equation [2]. Moreover, for
the alternating ferromagnetic chain z depends strongly
on the coupling constants [3,4]. All these results have
been obtained for the closed chain. In this paper we
consider the critical dynamics of the ferromagnetic open
Ising chain. We obtain explicitly the scaling form of the
relaxation time of the magnetization of finite chains. We
find that z = 2 only when the limit of infinite chain is
taken. For finite chains we show that the relaxation time
diverges with z = 1.

The model is described by the Hamiltonian for N spins,

g N
“%eT Y Ksisiya (1)
=1

where K = J/kgT with J > 0, s; = +1, and the sum
runs over the lattice sites ¢. The static solution is easily
obtained for the open chain and the relevant results for
this paper are the following: (a) the transition temper-
ature is T. = 0 and (b) the correlation length £ near T,
behaves as £ ~ exp(2K)/2.

The master equation for the time evolution of the prob-
ability P(s1,82,...,8n;t) to find the system in the con-
figuration {s} at time ¢ is
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Here w;(s1,52,...,8;,...,8n5) = w;i(s;) is the transition
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probability per unit time that the ith spin flips from the
value s; to —s; while all others are unaffected. These
transition rates must satisfy the detailed balance condi-
tion [1,2]. In the present situation, the transition rates
for the end spins s; and sy and for the bulk spins of the
lattice s; (1 < ¢ < N) are different. For the end spins the
Glauber rates are

wy(s1) = %(1 — Bs182) (3)
wn(sn)= %(1 — BsN_18N) , (4)

with 8 = tanh(K). For the bulk spins the Glauber rates

w;(s;) = %[1 —v8i(8i—1 + siy1)] (5)

where v = (1/2) tanh(2K). Note that the time scale of
the thermal bath was incorporated in the time variable.

The evolution of the local magnetization (s;(t)) =
2_{s} 5P ({s},1) is described by

d
7 (8:(1) = —2(siwi(s:)) - (6)
From Eq. (6) and using Egs. (3)—(5), we obtain
d 2 +
55 =-MS , (7)

where § is the N-dimensional column vector with the
elements (s1(¢)),...,(sn(t)) and M is the square matrix

1 -8 0 o ... 0 o0
-y 1 - 0 ... 0 O

M = 0 -y 1 - ... 0 0] (8)
0 0 0 o ... -8 1

In order to solve this dynamical equation, we must ob-
tain the eigenvalues and eigenvectors of the tridiagonal
matrix M. Notice that the magnetization is not an eigen-
mode of the dynamics. However, it can be expressed as a
linear combination of the eigenvectors of the matrix M.
Every eigenvector ¢; decays exponentially as exp(—A;t),
where ); is the corresponding eigenvalue. The longest
time behavior of the dynamics is dominated by the slow-
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est mode, say ¢;, if its amplitude is finite. Moreover,
as the critical temperature is approached the magnetiza-
tion coincides with the slowest mode ¢;. This is due to
the fact that the amplitudes of all other modes that con-
tribute to the magnetization vanish as T — T,. There-
fore, we will focus our attention on the determination of
the eigenvalue A;. The eigenvalues of the N x N matrix
M are obtained from det [M — AIy] = 0, where Iy is the
N x N identity matrix. The determinant can be evalu-
ated by the cofactor expansion of the first two lines and
the last two lines. We obtain

(1 —A)? det [Mpy—_2] — 273 det [My_3]
+7%8% det [My_4] =0 , (9)

where M, is an n X n tridiagonal matrix with elements
M;; =1-X, M;11; = M; ;11 = —v. Those matrices can
be written as M,, = (1—A)L, —yV,,, where V,, isannxn
tridiagonal matrix with the diagonal elements (z,¢) equal
to zero and the elements (¢, + 1) and (¢ + 1,%) equal to
1. The eigenvalues of V,, are v? = 4sin*[nr/(2n +2)] — 2
for r =1,2,...,n. So the eigenvalues of M are given by

(1= X)2F(\,N —2) —298(1 — M)F(\,N - 3)
+v?B2F(A\,N —4) =0 , (10)

where

n

F(An) = H{(1 ) -y [4sin2 (2n”fr2> - z]}

=1

(11)
‘We have studied the polynomial, for finite NV, in the limits
A — 0 and T — 0. The general behavior of the smallest
eigenvalue for an open chain of N sites is

1 exp(—2K) + g\%((];[v;_zl));—(; exp(—4K)

+ O(exp(——GK)) . (12)
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Therefore, for large N, we have, for the relaxation time
TN,
1 N¢

™ = — =
N Al 1+3ﬂ£

, (13)

where £ is the correlation length of the infinite system.
The thermodynamic limit of the relaxation time is 7o, =
3£2. Since T, ~ &7 [5], we have z = 2. Finite size scaling
[6] states that, near T, and for large N, 7n /7o = f(IN/E).
From Eq. (13) we see this expected behavior, namely,

-1
LA L_ (14)
Too 3+ NE1

At fixed temperature and N — oo (N/€ > 1) we have,
as usual, 7§ /T — 1. Let us consider the finite chain,
namely, N fixed and £ — oo (N/€ <« 1). In general,
we expect that 7 has a nonsingular behavior and that
TN/Too ~ N*{7%. Note that this determines the scal-
ing relation 7n/7n+ = (N/N')?. However, we obtain
from Eqgs. (13) and (14) that 74 ~ N¢, implying that
Tn diverges at zero temperature with z = 1 and that
7n/7Tn = (N/N')*. This anomalous scaling is related to
the fact that the critical temperature is zero. It is worth
mentioning that the closed finite chain does not show a
finite size scaling form for the relaxation time. For this
case the relaxation time of the magnetization does not
depend on N and is proportional to ¢2, implying z = 2
for any value of N.

Our results for the open chain can be explained as
follows. When the chain is finite, the end spins are flipped
with a larger rate (w ~ ') than the inner spins (w ~
&72). This is an extra channel for the relaxation. In the
thermodynamic limit the end spins are irrelevant and the
system presents the usual way of relaxation, namely, the
random walk of the domain walls [7].
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